物理模型(實體模型)
通過材料(如金屬、塑料、木材等)手工或機械加工制作的實體模型,直觀展示設備的外觀結構、尺寸比例。
應用場景:產品原型展示、工業(yè)設計驗證、展覽展會等。
特點:可觸摸、立體感強,但制作成本較高,修改難度大。
工業(yè)設備模型的核心作用
輔助設計研發(fā)
通過數(shù)字模型進行結構優(yōu)化(如輕量化設計)、運動仿真(如齒輪嚙合分析),減少物理原型試錯成本。
案例:汽車制造中,利用 CAE 模型模擬車身碰撞過程,提前發(fā)現(xiàn)結構弱點。
教學與培訓
物理模型或虛擬仿真系統(tǒng)(如 3D 交互式培訓軟件)可幫助操作人員熟悉設備原理和操作流程,降低實操風險。
案例:核電站利用 1:1 比例的模擬控制臺培訓操作員應對緊急工況。
展示與溝通
在投標、展會或客戶參觀時,模型可直觀呈現(xiàn)設備性能,增強溝通效率。
案例:工程機械廠商通過動態(tài)數(shù)字模型演示挖掘機的作業(yè)流程,吸引客戶。
預測與維護
結合物聯(lián)網(IoT)和大數(shù)據,數(shù)字孿生模型可實時監(jiān)控設備狀態(tài),預測故障并優(yōu)化維護計劃。
案例:風力發(fā)電機的數(shù)字孿生模型通過傳感器數(shù)據模擬葉片磨損情況,提前預警更換需求。
建模技術
正向建模:從概念設計出發(fā),通過 CAD 軟件逐步構建設備的幾何結構和裝配關系。
逆向建模:通過三維掃描(如激光雷達、結構光掃描儀)獲取現(xiàn)有設備的點云數(shù)據,反推三維模型,用于舊設備改造或仿制。
多物理場建模:結合流體力學(CFD)、有限元分析(FEA)等工具,模擬設備在溫度、壓力、電磁等多場耦合下的性能。
仿真技術
運動仿真:驗證機械部件的運動干涉和軌跡合理性(如機器人路徑規(guī)劃)。
熱力學仿真:分析設備散熱、能量損耗等問題(如電機溫升模擬)。
控制仿真:通過 PLC(可編程邏輯控制器)虛擬調試,驗證自動化程序的邏輯正確性。